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Abstract

The optimum suction distribution which gives the longest laminar region for a given
total suction is computed. The goal here is to provide the designer with a method to
find the best suction distribution subject to some overall constraint applied to the suction.
We formulate the problem using the Lagrangian multiplier method with constraints. The
resulting non-linear system of equations is solved using the Newton-Raphson technique.
The computations are performed for a Blasius boundary layer on a flat-plate and crossflow
cases. For the Blasius boundary layer, the optimum suction distribution peaks upstream
of the maximum growth rate region and remains flat in the middle before it decreases
to zero at the end of the transition point. For the stationary and travelling crossflow
instability, the optimum suction peaks upstream of the maximum growth rate region and
decreases gradually to zero.
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for Computer Applications in Science and Engineering (ICASE), NASA Langley Research
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1. Introduction

There exists several methods to control the laminar boundary layers, e.g. suction,
cooling the wall, modifying the shape, artificial blowing etc. The main purposes of these
controls are to: (1) avoid the laminar separation and/or (2) delay or prevent the transition
from laminar to turbulent flow in the laminar boundary layers and hence reduce the drag
force and/or increase the lift. In this paper we are concerned with the use of suction to
control transition in laminar boundary layers.

The effects of suction on a laminar boundary layer are to reduce the thickness of the
boundary layer and to make the boundary layer becomes fuller near the wall. Since the
viscous instability is directly related to the second derivative of the streamwise velocity at
the wall the boundary layers with suction becomes more stable than that without suction.
In flows with adverse pressure gradients the suction removes or weakens the inflection
in the velocity profile and hence inhibits the inviscid instability.

In theory with enough amount of suction, it is possible to completely prevent the
transition from laminar to turbulent flow. However, increasing the amount of suction has
two adverse consequences. Firstly to apply a large amount of suction one needs to drive
a big pump and hence the saving in drag due to suction will be offset by the energy
needed for the pump. Secondly, when the suction is applied the boundary layer becomes
thin and hence the skin friction increases. It is therefore important to keep the amount of
suction required to a minimum. The questions to ask are what is the minimum amount of
suction required to satisfy a design requirement and what is the best suction distribution?
In this work we investigate these questions.

The use of suction as a feasible and effective method to control laminar boundary
layers existed from the era of Prandtl. Pfenninger (1977) summarizes the research work
done at Northrop about using suction to control transition in laminar boundary layers.
It has been verified theoretically and experimentally that the boundary layer suction
prevents laminar separation and transition in flows with any pressure rise at high Reynolds
numbers. Reed and Nayfeh (1986) investigated the effects of different suction strip
configurations on the stability using linear triple-deck theory and influence coefficient
method. The change in the integrated growth rate at a fixed location is obtained as a
linear combination of suction strip velocities. The optimum location of the suction strip
is determined by the point where the multiplying constant takes the maximum value.
Their numerical results showed that the coefficient becomes maximum near the branch 1
and branch 2 neutral points and near the former being larger. This showed that suction
is more effective when placed near the branch 1 neutral point. In a companion paper
Reynolds and Saric (1986) investigated experimentally the effect of different suction strip
configuration on the amplification of the disturbances. They used two suction panels each
consists of 15 suction strips. Their experimental findings also agreed with the theoretical
results that the suction be concentrated near the neutral point region to obtain the largest
reduction in the integrated growth.

1



The state of the art transition prediction method that is used in the design is the
empirical eN method. The numerical procedure to locate the transition onset involves
two steps. The first step is to compute the mean flow for a given suction distribution,
and the second step is to locate the transition onset using the linear stability and the
eN method.

To find the optimum suction distribution, trial and error procedures are commonly
used. In those methods, a few different suction distributions are tried, and the distribution
which gives the furthest transition onset is selected as the design suction distribution. In
this work, we develop a method based on the Lagrangian multipliers technique, to find
the optimum suction distribution for a given suction constraint which is dictated by the
designer.

2. Formulation
We are concerned with finding the optimum suction distribution to stabilize a laminar

boundary layer as much as possible within some ovearall constraint on the amount of
suction to be used. The wall suction basically modifies the mean velocity profiles inside
the boundary layer, and these changes in the mean flow profiles influence the stability
characteristics of the boundary layer. The transition from laminar to turbulence in a low
disturbance environment is directly related to the stability characteristics of the boundary
layer profiles. Hence the transition point is connected to the suction through the stability
and the mean flow profiles. Thus the analysis to control and/or predict the transition onset
point involves the following three steps and we describe them each in the subsequent
sections:

1. Mean flow calculations

2. Stability computations

3. Finding the optimum solution.

2.1 Meanflow

In this work we compute the mean boundary layer profiles by solving the boundary
layer equations. The analysis is in fact not at all dependent on the nature of the basic
boundary layer flow. Let x be the coordinate in the axial direction, y be the coordinate
in the direction normal to the surface, and z be the co-ordinate in the spanwise direction.
The boundary layer equations for an incompressible three-dimensional flow are

@U

@x
+
@V

@y
= 0; (1)

U
@U

@x
+ V

@U

@y
= Ue

dUe

dx
+ �

@2U

@y2
;

U
@W

@x
+ V

@W

@y
= �

@2W

@y2
;

(2)
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The boundary conditions are

U = 0; V = Vo(x); W = 0 at y = 0; (3)

and U ! Ue; W !We at y !1:.
HereUe(x);We are the free-stream velocities in the streamwise and spanwise directions
and Vo(x) is the suction velocity at the wall.

2.2 Stability

The growth of a disturbance is calculated by solving the linear parallel stability equa-
tions (Drazin & Reid 1981). Here we discuss the stability equations for an incompressible
flow. In the quasi-parallel linear stability theory, the disturbance quantities are written in
normal mode form. If q(x,y,z) is a disturbance flow variable, in normal mode analysis,
we write

q(x; y; z) = q(y) e
i
R
�dx+ i�z � !t

: (4)

Here�, � are the axial and spanwise wave numbers,! is the frequency, andq(y)
is the eigenfunction. We substitute this expression into the linearized Navier-Stokes
equations and, assuming the flow is parallel in the streamwise direction, we obtain an
ordinary differential equation forq(y). This equation, along with the homogeneous
boundary conditions at the wall and in the free-stream, forms the eigenvalue problem for
the wavenumber� and for the eigenfunction q(y). The three-dimensional linear stability
equations for an incompressible flow are

dv

dy
= �i �u� i�w;

d2u

dy2
=

�
i(�U + �W � !)Re+ �2 + �2

	
u+Re
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v + i�Rep;
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= �
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d2w
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i(�U + �W � !)Re+ �2 + �2

	
w+ i�p

+Re
dW

dy
v:

(5)

The boundary conditions are

u = 0; v = 0; w = 0 at y = 0; (6)
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and u! 0; w! 0 at y !1: Hereu; v;w are the velocities in the axial, normal
and spanwise directions and p is pressure,� is a complex wavenumber

� = �r + i�i; (7)

and (��i) measures the growth of the disturbances in the axial direction. We note for
our control problem that the suction Vo only enters in the stability problem through the
mean flow profiles U and W.

2.3 Transition Prediction

The state of the art transition prediction method that is used in the design is the
empirical eN method (Smith 1956, Van Ingen 1956) and here we use this method to
locate the transition onset pointxT . In this method, the transition point is defined when
the integrated growth rate reaches a prescribed value N0.Z

xT

xN

�(x)dx = N0: (8)

Here � is the growth rate,xN is the neutral point where�(xN) = 0 and xT is the
transition onset point.

2.4 Control and Optimum Suction Distribution

Any control strategy to stabilize the boundary layer must reduce� and hence increase
the laminar region or in other words maximizexT . Therefore the problem is to maximize
xT for a given constraint on the suction. Let us assume that the suction distribution
Vo(x) is constrained by

xmaxZ

xmin

V 2

o
(x)dx = Q: (9)

Here we assumeVo(x) = 0 for x � xmin. In our calculations we takexmin < xN
andxmax is much larger thanxT . Here we have chosen to constrain the suction based
on a measure of the work done to supply the suction rather than simply onVo(x) itself.
This prevents the somewhat absurd distributions generated in the latter case where for
example large amount of suction in potentially unstable regions are balanced by equally
large amounts of blowing in the more stable regions. The control problem is then reduced
to maximizing

I =
x2

T

2
; (10)

with the following constraints
xmaxZ

xmin

V 2

o
dx = Q; (11)
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and xT is defined by,
xTZ

xN

� dx = N0: (12)

To simplify the computations, we reduced the continuous problem inVo(x) to a discrete
one by expandingVo(x) in terms of an appropriate set of functions. Thus we write

Vo(x) =

NX
1

an Fn(x) (13)

and for a givenN we find {an} which maximizesxT subject to the constrains (11-12).

3. Solution Procedure
The optimum suction distributions are found using the Lagrangian multiplier tech-

nique. Thus we write

F =
x2
T

2
+ �

8<
:

xTZ

xN

�dx�No

9=
;+ �

8<
:

xmaxZ

xmin

V 2

o
dx�Q

9=
;

= F (xT ; �; �; ai; !; �):

(14)

Here�; � are Lagrangian multipliers and!; � are the frequency and spanwise wavenum-
ber. By differentiating F respect to each variables we obtain the following Euler-Lagrange
equations.

xT + � � (xT ; ai; !; �) = 0;

Z xT

xN

�(ai; !; �; x) dx�No = 0;

Z xmax

xmin

V 2

o
dx�Q = 0;

�

xTZ

xN

@�

@ai
dx+ �

xmaxZ

xmin

@V 2

o

@ai
dx = 0 fi = 1;Ng;

xTZ

xN

@�

@�
dx = 0;

xTZ

xN

@�

@!
dx = 0:

(15)
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We note that by including the last two conditions we find the optimum solution in the
whole �, ! plane. If we want to find the solution for a fixed quantity of�, or !, we
remove the appropriate equations from the set eq.(15). In our calculations, we considered
two different functions forFn(x), one is a polynomial and the other is a harmonic (sine)
function. Thus we have either

Vo(x) =
NX
i=1

aiX
i+S ; (16)

or

=

NX
i=1

ai sin i�X;

where S is an integer which determines the shape of the suction distribution at the
initial point xxmin andX = x�xmin

xmax�xmin
:To solve the system, we treat the (ai; �; !) as our

independent variables and rewrite the equations as

f1 =
NX
k=1

NX
l=1

akal
L

k + l + 2S + 1
�Qo = 0;

fi =

 
NX
j=1

aj

j + 2 S + 2

! xTZ
xN

@�

@ai
dx�

 
NX
j=1

aj

i+ j + 2 S + 1

! xTZ
xN

@�

@a1
= 0;

fN+1 =

xTZ
xN

@�

@�
d� = 0;

fN+2 =

xTZ
xN

@�

@!
d! = 0:

(17)

Therefore we have (N+2) equations for the (N+2) variables {ai i = 1;N }, �, and!.
Since this is a nonlinear system it has to be solved iteratively and we used Newton
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linearization procedure which requires the Jacobian offfig with respect to the variables
faig, �, and !. For example,

@fi

@ak
=

 
NX
j=1

aj

j + 2S + 2

!� xTZ
xN

@2�

@ai@ak
dx

+
@xT

@ak

@�

@ai
(xT )�

@xN

@ak

@�

@ai
(xN)

�

+
1

k + 2S + 2

xTZ
xN

@�

@ai
dx

�

 
NX
j=1

aj

i+ j + 2S + 1

!( xTZ
xN

@�

@a1@ak
dx

+
@xT

@ak

@�

@a1
(xT )

�
@xN

@ak

@�(xN)

@a1

)
�

1

i+ k + 2S + 1

xTZ
xN

@�

@a1
dx:

for i = 2; N:

(18)

Similarly for otherfi. We observe that to evaluate {fi} and the Jacobian we need the
quantities

@�

@ai

@2�

@ai @aj

@�

@�

@2�

@� @ai

@2�

@� @!

@�

@!

@2�

@!@ai

(19)

@xT

@ai

@xT

@!

@xT

@�

@xN

@ai

@xN

@!

@xN

@�
:

(20)
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Amongst these quantities the last two rows can be obtained from the relationships

@xT

@ai
= �

xTR

xN

@�

@ai
dx

�(xT )

@xN

@ai
= �

@�

@ai

@�

@xN

:

(21)

and similar forms may be found for the other four quantities in the last two rows. The
quantities in the first three rows are obtained by differentiating the stability equations.

For example
@�

@ai
is obtained from the solution of the system

Lf ig = �i q1 + q2: (22)

where L is the linear operator eq. (5), is the flow variable {u; v;w; pT }
q1 = q1f g; q2 = q2f ;Ui;Wig and subscripti denotes differentiation respect toai.
@�

@ai
can be computed using the adjoint method. We see that this requires the knowledge

of the mean flow quantities
dU

dai
etc. This is obtained again by differentiating the mean

flow equations.

@Ui

@x
+
@Vi

@y
= 0; (23)

Ui

@U

@x
+ U

@Ui

@x
+ Vi

@U

@y
+ V

@Ui

@x
= �

@2Ui

@y2
;

Ui

@W

@x
+ U

@Wi

@x
+ Vi

@W

@y
+ V

@Wi

@y
= �

@2Wi

@y2
;

(24)

Ui =Wi = 0 at y = 0;1;

and Vi = Xi+n at y = 0:
(25)

All the equations are solved using the two-point fourth order compact scheme in the y
direction (Malik (1990)) together with a second order accurate method inx.
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4. Results

4.1. Blasius flow

As a first case we compute the optimum suction distribution for the boundary layer
over a flat plate at zero pressure gradient. For the details about the stability theory,
the reader is referred to the article by Mack (1984). In all the computations we assign
the non-dimensional quantityxmin = 1. The Reynolds number at the non-dimensional
distancex = 1 is taken as 600 which is well upstream of the neutral point for the most
amplified frequency. The N-factor at the transition location is taken asNo = 9.

The non-dimensional suction velocity and the growth rate� are defined by

�Vo =
Vo

U1

r
U1L

�
;

� = ���
i
L;

(26)

whereU1 is the free-stream velocity,L is the length scale and���
i

is the dimensional
imaginary part of the eigenvalue�. Figure 1 shows the optimum suction distribution
and the corresponding growth rate� for various suction parameterQ. The horizontal
axis shows the non-dimensional coordinatex and the right hand vertical axis shows the
suction velocity. In figure 2 we plotted the N-factor variation at the optimum suction
distribution and figure 3 illustrates the convergence history towards the optimum solution.
These results are obtained with the polynomial expansions for the V0 with 8 polynomials.

Our initial suction distribution “iteration 1” is concentrated beyond the transition
point. It is interesting to observe that within one iteration the suction is redistributed
beneath the unstable region up to the transition locationxT , and beyond the transition
point the suction is approximately zero. The convergence becomes slower if we have
to optimize over the frequency and the spanwise wavenumber. Overall the converged
results are obtained within 4 to 5 iteration cycles.

From figures 1 and 2 it is seen that the suction distribution peaks upstream of the
maximum growth rate and remains flat in the most unstable region and approaches zero
steeply near the transition point. The figures also show that in the maximum growth
region the suction becomes smaller than that in the less unstable region. The numerical
results of Reed and Nayfeh (1986) showed from their linear triple-deck theory and the
computations that the multiplying constant becomes maximum near the lower and upper
branch neutral points. If we used the constrint that the square of the total suction is
constant the suction distribution should peak near the lower and upper branch neutral
points which agrees with our computation.

Figure 4 shows the effect of changing the number of polynomials that we used to
represent the suction distribution. The results are presented for N=4, 6 and 8 and it is
seen that there is not much difference in the distribution between N=6 and 8. In figure 5
we compared the results that obtained with the polynomial and the sine series expansions
for the suction. For the sine series expansions we kept 8 and 12 terms. The suction
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distribution obtained with the sine series expansion has some small oscillations, but the
oscillation decreases with increasing number of terms. However the growth rate, N-
factor, the transition point and the shape of the suction distribution do not differ between
the two representations.

Figure 6 shows the largest transition Reynolds numberReT and the corresponding
most amplified frequency F as a function of the control parameterQ. In essence this
figure depicts the longest transition region that is possible using the steady suction under
this constraint for the Blasius boundary layer. Similar graphs can be obtained for other
problems using this method.

4.2. Crossflow Instability

As a second example we performed the computations for three-dimensional boundary
layers. We considered flow over a swept wedge as the model problem. The inviscid
velocity along the axial and the spanwise directions are

Ue = Cxm;

W =W1 = const:
(27)

The details about the linear stability for this flow are given in Mack (1978) and Malik
et.al (1992). The Reynolds number at xmin=1 is

Reo =
L
p
�=c

= 80; (28)

and the Reynolds number based on the spanwise velocity is

Reo =W1
L
p
�=c

= 500: (29)

Figure 7 shows the optimum suction distribution and the corresponding growth rate� for
various suction parameter Q for the travelling disturbances. In Figure 8 we plot the N-
factor variation at the optimum suction distribution and figure 9 shows the convergence
history. The transition point xT is defined by N0=10. The conclusions are similar to
that of the Blasius boundary layer case. In the crossflow case most of the suction is
distributed near the maximum amplification region and in the two-dimensional case the
suction distribution is almost flat for most of the region.

For the travelling disturbances the optimization is done for the frequency and the
spanwise wavenumber and from the figure 9 we see that the converged results are
obtained in 4-5 iteration cycle.

Figures 10-12 show the results for the stationary disturbances. Figure 12 shows the
effect of changing the number of polynomials that we used to represent the suction
distribution. The results are presented for N=8 and 10. It is seen that the small
oscillations which appear in the distribution decreases with increasing N, but the shape
and the transition point do not change. In Figure 13, we compare the growth rate and
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the suction distribution for the stationary and the travelling disturbances. As expected
the travelling disturbances are more unstable than the stationary disturbances. But the
maximum suction distribution occurs near the same location for both cases. For the
stationary disturbances, the most of the suction is distributed upstream of the maximum
amplification rate compared to that for the travelling disturbances. Table 1 shows the
variation of the Reynolds number at the transition pointReT , the most amplified non-
dimensional frequency and the most amplified spanwise wavenumber� with the suction
parameter Q.

Travelling Stationary

Q F � ReT � ReT

.0 4.4325E-3 .2988 497 .3327 688

.0001 4.3881E-3 .3004 503 .3338 691

.001 4.2940E-3 .3037 516 .3370 700

.01 4.0310E-3 .3135 553 .3456 726

5. Conclusions

Optimum suction distribution for transition control is investigated using the La-
grangian multiplier technique with constraints. We imposed a suction constraint based
on a measure of the work done to supply the suction. The appropriate constraint should
be the real cost to install and operate the suction distribution. Here we basically as-
sumed that this is proportional to the integral of the square of the suction velocity. We
investigated the incompressible flow over a flat plate, swept Hiemenz flow.

The converged results are obtained in 4–5 iterations cycles. For the incompressible
flow the optimum suction peaks upstream of the most unstable region and remains flat
in the middle and becomes zero at the end of the transition. For the travelling and
crossflow type instability the suction peaks upstream of the most unstable region and
gradually becomes zero at the end.

Another observation was that with increasing suction parameter Q, the convergence
becomes slower with the polynomial expansion. The sine expansion converges faster but
we have to keep a large number of terms to remove the oscillations. However the overall
shape, the transition location, growth rate do not change with the increasing number of
terms. The amount of suction needed to control the crossflow instability is about two
orders of magnitude larger than that for the T-S wave. For example, we can delay the
transition on a flat plate by 20% with Q=.001, and the maximum suction velocity is
V0

U1
= 2 � 10

�5. For the stationary crossflow we delay the transition only by 6% with
Q=.01 and the maximum suction velocity isV0

U1
= 7 � 10

�4.
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Figure 1. Optimum suction distribution and the growth rate
for the Blasius boundary layer. N=8.
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Figure 5. Optimum suction distribution and the growth rate using
the polynomial and sine representation for the suction.

17



0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
3.0E6

3.2E6

3.4E6

3.6E6

3.8E6

4.0E6

2.0E-5

2.2E-5

2.4E-5

2.6E-5

2.8E-5

3.0E-5

RET

RET

F

Control Parameter Q

F
re

qu
en

cy
 F

Figure 6. Variation of the maximum transition Reynolds number and the
frequency with the suction parameter Q. N=8.

18



2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

-0.070

-0.060

-0.050

-0.040

-0.030

-0.020

-0.010

0.000

0.010

X

G
ro

w
th

 R
at

e

S
uc

tio
n 

V
el

oc
ity

Optimum suction distribution

Growth rate

Swept Hiemenz Flow Travelling

Q=.0
.0001
.001
.01
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Figure 8. Optimum suction distribution and the N-factor for the swept Hiemenz flow
for travelling disturbances.R = 500; N=8.
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Figure 9. Convergence towards the optimum suction distribution and the growth rate
for the swept Hiemenz flow.R = 500; Q=.001, N=8.
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Figure 10. Optimum suction distribution and the growth rate for the swept
Hiemenz flow for stationary disturbances.R = 500; N=10.
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Figure 11. Optimum suction distribution and the N-factor for the swept
Hiemenz flow for stationary disturbances.R = 500; N=10.
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Figure 12. Optimum suction distribution and the N-factor for
different values of N=8, 10 for Q=.01.
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Figure 13. Optimum suction distribution and the N-factor for the stationary
and travelling disturbances. Q=.01, N=8.
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